Etiqueta: Generación de datos sintéticos
-
Redes Bayesianas para la generación de datos sintéticos
Las redes Bayesianas se basan en las reglas de probabilidad, y mas concretamente en el Teoremas de Bayes: Este teorema nos permite crear estructuras de redes que codifican las relaciones que hay entre las diferentes variables (maravillosas las matemáticas). Esto se representa con nodos (que simbolizan a las variables) y flechas (que simbolizan las relaciones…
-
Procesos Gaussianos para la generación de datos sintéticos
Los procesos Gaussianos son un tipo de modelo estadístico generativo, por lo tanto para cada punto se calcula no solo la predicción de él, si no su distribución (esto significa que cada punto tiene consigo un intervalo de confianza asignado, de valores esperados), son modelos complejos de crear y que requieren un trabajo previo para…
-
ARIMA/SARIMA para la generación de datos sintéticos
Los modelos de AutoRegressive Integrated Moving Average (ARIMA) o Seasonal ARIMA (SARIMA) son modelos que se usan exclusivamente con datos que vienen en forma de series temporales. Están formados por diferentes componentes que se unen para la predicción de los próximos datos en la serie temporal (denominado normalmente forecasting), para entender estos modelos describiremos ahora…
-
Transformers y Mecanismos de Atención
En nuestras publicaciones anteriores, hemos explorado cómo modelos como las Redes Neuronales Recurrentes (RNNs) y sus evoluciones, como las GRUs y LSTMs, nos permitieron trabajar con datos secuenciales, recordando información a lo largo del tiempo. Sin embargo, estas arquitecturas tienen sus limitaciones, especialmente cuando intentamos procesar secuencias muy largas o paralelizar el entrenamiento de estas…
-
Variational Autoencoders para la generacion de datos sintéticos
Los Variational Autoencoders (VAE) son un tipo de autoencoder (o autocodificador), que se usa específicamente para la generación de datos sintéticos. Por lo tanto, es importante entender primero que es un Autoencoder. Los Autoencoders fueron descritos por primera vez formalmente en 1986 [1], aunque fue Kramer en 1991 [2], quien presentó una estructura concreta, y…
-
Kernel Density Estimators para la creación de datos sintéticos
Comenzamos este maravilloso mes de Abril con otro tipo de modelo estadístico generativo, en este caso los Kernel Density Functions. La motivacion de este tipo de algoritmos es ser capaces de describir la función de densidad de una población basándonos unicamente en una muestra limitada de esta. Es importante que entendamos a que nos referimos…
-
LSTM (Long Short-Term Memory)
Ya hemos hablado en nuestras entradas anteriores sobre cómo las Redes Neuronales Recurrentes (RNNs) pueden procesar secuencias y mantener información a través del tiempo. También vimos cómo las GRU simplificaron este proceso con menos parámetros. Hoy profundizaremos en otra arquitectura fundamental: las LSTM (Long Short-Term Memory). Las redes LSTM fueron propuestas en 1997 por Hochreiter…
-
GRU (Gated Recurrent Units)
En nuestra entrada anterior hablamos de las Redes Neuronales Recurrentes (RNNs), las cuales eran capaces de recordar información a través del tiempo gracias a un estado oculto. Sin embargo, también vimos que entrenarlas tiene algunas complicaciones como el problema del gradiente evanescente o explosivo. Para superar estos retos, los investigadores desarrollaron arquitecturas más avanzadas, y…
-
Redes Neuronales Recurrentes
Hoy vamos a hablar de un tipo de red neuronal fundamental para trabajar con datos de naturaleza secuencial, las Redes Neuronales Recurrentes (RNN). Las RNNs son una clase especial de redes neuronales diseñadas específicamente para procesar datos secuenciales, como texto, audio o series temporales. A diferencia de las redes neuronales convencionales (feed-forward), que procesan cada…
-
Normalizing Flows para la creación de datos sintéticos:
Los Normalizing Flows son un tipo de Probabilistic Generative Model, esto significa que lo que buscamos simular con el modelo es la distribución de una variable X, usando los datos que tenemos (xi), describiéndola con una función de densidad pX(x) y que además es parametrizado por un valor θ. La idea principal de este modelo…